Comment on generalized parasupersymmetric quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 254699
(http://iopscience.iop.org/0305-4470/25/17/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 17:00

Please note that terms and conditions apply.

Comment on generalized parasupersymmetric quantum mechanics

Mitsuyoshi Tomiya
Department of Applied Physics, Faculty of Engineering, Seikei University, Kichijoji Kitamachi 3-3-1, Musashinoshi, Tokyo 180, Japan

Received 3 January 1991, in final form 13 April 1992

Abstract

We construct the arbitrary order parasupersymmetric quantum mechanics of one boson and one parafermion degrees of freedom. The parasupersymmetry algebra is $Q_{j}^{2 j} Q_{1}^{\dagger}+$ $Q_{j}^{2 j-1} Q_{j}^{\dagger} Q_{j}+\ldots+Q_{j}^{\dagger} Q_{j}^{2 j}=\alpha_{j} Q^{2 j-1} H\left(\alpha_{j}=\frac{2}{3} j(j+1)(2 j+1)\right), Q_{j}^{2 j+1}=0,\left[Q_{j}, H\right]=0$, where $2 j$ represents the order of parasupersymmetry, H is the Hamiltonian and Q_{j} is the parasupercharge.

Recently the interest of physicists has turned to the possibilities of statistically exotic behaviour of particles. Its scope is expected to spread over a wide range of physics. For example, the anyon [1] is one such case. Here we consider parastatistics [2], applying it to quantum mechanics associated with supersymmetry [3].

In the case of ordinary $N=1$ supersymmetric quantum mechanics, the supercharge Q and the Hamiltonian H make the supersymmetric algebra [3]

$$
\begin{equation*}
\left\{Q, Q^{+}\right\}=Q Q^{+}+Q^{\dagger} Q=H \quad Q^{2}=0 \quad[H, Q]=0 . \tag{1}
\end{equation*}
$$

We shall try to generalize the parasupersymmetric quantum mechanics which was introduced by Rubakov and Spiridonov [4]. They constructed the second-order parasupersymmetric quantum mechanics. We will generalize it to higher order. In generalized parasupersymmetric quantum mechanics, fermions obey parastatistics; the same kind of fermion can occupy the same state n times ($n=1$, ordinary fermion; $n=2$, Rubakov's case).

We shall begin by studying the parasupercharge which consists of the direct product of the parafermionic and bosonic operators. In the case of second-order parasupersymmetric quantum mechanics, the supercharge Q and the Hamiltonian H obey the parasupersymmetric algebra

$$
\begin{equation*}
Q^{2} Q^{\dagger}+Q Q^{\dagger} Q+Q^{\dagger} Q^{2}=4 Q H \quad Q^{3}=0 \quad[H, Q]=0 . \tag{2}
\end{equation*}
$$

Note that this time the square of Q does not vanish, but the cube of Q does. The Hamiltonian does not have a direct representation by Q and Q^{\dagger}. Nevertheless, the fermionic creation (annihilation) operator $f^{\dagger}(f)$ and the fermionic part of the Hamiltonian H_{F} still preserve the algebra

$$
\begin{equation*}
\left[f, H_{\mathrm{F}}\right]=f \quad\left[f^{\dagger}, H_{\mathrm{F}}\right]=-f^{\dagger} \quad H_{\mathrm{F}}=\frac{1}{2}\left[f^{\dagger}, f\right] . \tag{3}
\end{equation*}
$$

Therefore f, f^{\dagger} and $2 H_{\mathrm{F}}$ perform the algebras of $\mathrm{sl}(2 ; \mathbb{C})$. Its fundamental representation corresponds to an ordinary fermion. Higher-dimensional representations correspond to higher-order parastatistics respectively. The construction of the higher representation
of $\operatorname{sl}(2 ; \mathbb{C})$ is already familiar among physicists as the composition of angular momentum. Mathematically the representation for the angular momentum j coincides with the parafermionic operators of order $n=2 j$. The identification $n=2 j$ will help us to clarify the algebraic structure of the parafermionic operators. Let us redefine the creation (annihilation) operator of the parafermion of the order $n=2 j$ as $f_{j}^{\dagger}\left(f_{j}\right)$ and the supercharge as Q_{j}. Subscript j is to distinguish the dimension of representation (the dimension is $2 j+1$) and of course it is mathematically related to angular momentum j described above.

In the following we shall prove that operators $f_{j}^{\dagger}\left(f_{j}\right)$ obey the identity

$$
\begin{equation*}
f_{j}^{2 j} f_{j}^{\dagger}+f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}+f_{j}^{2 j-2} f_{j}^{\dagger} f_{j}^{2}+\ldots+f_{j}^{\dagger} f_{j}^{2 j}=\alpha_{j} f_{j}^{2 j-1} \tag{A}
\end{equation*}
$$

where

$$
\alpha_{j}=\frac{2}{3} j(j+1)(2 j+1) \quad\left(j=\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right)
$$

In order to prove (A) we choose the Hermitian representation of $f_{j}\left(f_{j}^{\dagger}\right)$.
$\langle j, m+1| f_{j}^{\dagger}|j, m\rangle=\sqrt{(j-m)(\bar{j}+m+1)} \quad(m=-j,-j+1, \ldots, j-1)$
$\langle j, m-1| f_{j}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \quad(m=-j+1, \ldots, j-1, j)$
otherwise

$$
\langle j, k| f_{j}^{(t)}|j, l\rangle=0
$$

Here the state $\langle j, m\rangle$ has been defined as

$$
\frac{1}{2}\left[f_{j}^{\dagger}, f_{j}\right]|j, m\rangle=m|j, m\rangle \quad-j \leqslant m \leqslant j
$$

and this state represents $(m+j)$-parafermions. We calculate term by term:

$$
\begin{align*}
& \left(f_{j}^{2 j} f_{j}^{\dagger}|j, j\rangle=0\right) \\
& \langle j,-j| f_{j}^{2 j} f_{j}^{\dagger}|j, j-1\rangle=2 j \prod_{m=-j+1}^{j-1} \sqrt{(j+m)(j-m+1)} \\
& \langle j,-j+1| f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}|j, j\rangle=2 j_{m} \prod_{m=-j+2}^{j} \sqrt{(j+m)(j-m+1)} \\
& \langle j,-j| f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}|j, j-1\rangle=2(2 j-1) \prod_{m=-j+1}^{j-1} \sqrt{(j+m)(j-m+1)} \\
& \langle j,-j+1| f_{j}^{2 j-2} f_{j}^{\dagger} f_{j}^{2}|j, j\rangle=2(2 j-1) \prod_{m=-j+2}^{j} \sqrt{(j+m)(j-m+1)} \\
& \vdots \\
& \langle j,-j| f_{j}^{2 j-k} f_{j}^{\dagger} j_{j}^{k}|j, j-1\rangle=(2 j-k)(k+1) \prod_{m=-j+1}^{j-1} \sqrt{(j+m)(j-m+1)} \tag{5}\\
& \langle j,-j+1| f_{j}^{2 j-k-1} f_{j}^{\dagger} f_{j}^{k+1}|j, j\rangle=(2 j-k)(k+1) \prod_{m=-j+2}^{j} \sqrt{(j+m)(j-m+1)} \\
& \vdots \\
& \langle j,-j| f_{j} f_{j}^{\dagger} f_{j}^{2 j-1}|j, j-1\rangle=2 j \prod_{m=-j+1}^{j-1} \sqrt{(j+m)(j-m+1)} \\
& \langle j,-j+1| f_{j}^{\dagger} f_{j}^{2 j}|j, j\rangle=2 j \prod_{m=-j+2}^{j} \sqrt{(j+m)(j-m+1)} \\
& \left(f_{j}^{\dagger} f_{j}^{2 j}|j, j-1\rangle=0\right) .
\end{align*}
$$

Summing up all terms, we obtain

$$
\begin{align*}
&\langle j,-j+1|\left(f_{j}^{2 j} f_{j}^{\dagger}+f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}+f_{j}^{2 j-2} f_{j}^{\dagger} f_{j}^{2}+\ldots+f_{j}^{\dagger} f_{j}^{2 j}\right)|j, j\rangle \\
&=\frac{2}{3} j(j+1)(2 j+1) \prod_{m=-j+2}^{j} \sqrt{(j+m)(j-m+1)} \\
&=\alpha_{j}\langle j,-j+1| f_{j}^{2 j-1}|j, j\rangle \tag{6}\\
&\langle j,-j|\left(f_{j}^{2 j} f_{j}^{\dagger}\right.\left.+f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}+f_{j}^{2 j-2} f_{j}^{\dagger} f_{j}^{2}+\ldots+f_{j}^{\dagger} f_{j}^{2 j}\right)|j, j-1\rangle \\
&=\alpha_{j}\langle j,-j| f_{j}^{2 j-1}|j, j-1\rangle
\end{align*}
$$

where we have used

$$
\sum_{k=0}^{2 j-1}(2 j-k)(k+1)=\frac{2}{3} j(j+1)(2 j+1)=\alpha_{j} .
$$

All the other matrix elements vanish. Therefore we have the operator's identity (A).
Next we can derive the identity

$$
\begin{equation*}
Q_{j}^{2 j} Q_{j}^{\dagger}+Q_{j}^{2 j-1} Q_{j}^{\dagger} Q_{j}+Q_{j}^{2 j-2} Q_{j}^{\dagger} Q_{j}^{2}+\ldots+Q_{j}^{\dagger} Q_{j}^{2 j}=\alpha_{j} Q_{j}^{2 j-1} H \tag{B}
\end{equation*}
$$

where

$$
Q_{j}=a^{\dagger} f_{j} \quad Q_{j}^{\dagger}=a f_{j}^{\dagger} \quad H=\frac{1}{2}\left\{a^{\dagger}, a\right\}+\frac{1}{2}\left[f_{j}^{\dagger}, f_{j}\right]
$$

between the Hamiltonian H and the supercharge Q_{j}. The formula (A) plays a fundamental role here. The left-hand side of (B) becomes

$$
\begin{align*}
a^{\dagger 2 j} a f_{j}^{2 j} f_{j}^{\dagger}+ & a^{\dagger 2 j-1} a a^{\dagger} f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}+\ldots+a a^{\dagger 2 j} f_{j}^{\dagger} f_{j}^{2 j} \\
= & a^{+2 j-1} H_{\mathrm{B}}\left(f_{j}^{2 j} f_{j}^{\dagger}+f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}+\ldots+f_{j}^{\dagger} f_{j}^{2 j}\right)+a^{\dagger 2 j-1} \frac{1}{2}\left\{-f_{j}^{2 j} f_{j}^{\dagger}+f_{j}^{2 j-1} f_{j}^{\dagger} f_{j}\right. \\
& +\ldots+2\left(k-\frac{1}{2}\right) f_{j}^{2 j-k} f_{j}^{\dagger} f_{j}^{k}+\ldots+2\left(2 j-\frac{1}{2}\right) f^{\dagger} f^{2 j} S \\
= & a^{\dagger 2 j-1} H_{\mathrm{B}} \alpha_{j} f_{j}^{2 j-1}+a^{\dagger 2 j-1} \cdot \frac{1}{2} \cdot \frac{4}{3} \cdot j(j+1)(2 j+1) f_{f}^{2 j-1} H_{\mathrm{F}} \tag{7}\\
= & \alpha_{j}\left(a^{+2 j-1} f_{j}^{2 j-1}\right)\left(H_{\mathrm{B}}+H_{\mathrm{F}}\right) \\
= & \alpha_{j} Q^{2 j-1} H
\end{align*}
$$

where

$$
H_{\mathrm{B}}=\frac{1}{2}\left\{a^{\dagger}, a\right\} \quad H_{\mathrm{F}}=\frac{1}{2}\left[f_{j}^{\dagger}, f_{j}\right] .
$$

Finally we reach the superalgebra

$$
\begin{align*}
& Q_{j}^{2 j} Q_{j}^{\dagger}+Q_{j}^{2 j-1} Q_{j}^{\dagger} Q_{j}+Q_{j}^{2 j-2} Q_{j}^{\dagger} Q_{j}^{2}+\ldots+Q_{j}^{\dagger} Q_{j}^{2 j}=\alpha_{j} Q_{j}^{2 j-1} H \\
& Q_{j}^{2 j+1}=0 \quad\left[Q_{j}, H\right]=0 . \tag{C}
\end{align*}
$$

The bosonic part of the Hamiltonian H_{B} has positive definiteness, since H_{B} is the Hamiltonian of an ordinary harmonic oscillator. Its lowest energy is $\frac{1}{2}$. On the other hand, the parafermionic part of the Hamiltonian H_{F} of order $2 j$ has the series of the eigenvalues: $-j,-j+1, \ldots, j$. In the case of $j=\frac{1}{2}$ (ordinary susy), the lowest energy of the total Hamiltonian $H=H_{\mathrm{B}}+H_{\mathrm{F}}$ is zero, and H has positive semidefiniteness. In the case of $j>\frac{1}{2}$, unfortunately we cannot require that the spectrum of H is non-negative automatically without some other physical requirement. The states are $2 j$-fold degenerate, but there are a few exceptions. For example, we may assume that there exists the
unique ground state with the energy E_{0}. Energy levels with $E \gg E_{0}$ are $2 j$-fold degenerate. More precisely, the ground state is non-degenerate, the first excited state is doubly degenerate, the second excited state is triply degenerate, \ldots, i th $(i<2 j)$ excited state is $(i+1)$-fold degenerate. In the case $i \geqslant 2 j$, states are $2 j$-folded. Details of the spectrum will be discussed elsewhere [5].

Rubakov and Spiridonov [4] treat a more general case that the parasupercharge cannot be split into the direct product of the parafermionic and bosonic operators. Their Hamiltonian can possess the positive semidefiniteness of the energy under some physical conditions. We will generalize their parasupersymmetric quantum mechanics to higher order. Basically they represent the parafermion of order $2 j$ in a $(2 j+1) \times$ $(2 j+1)$-matrix. Thus the parasupercharge is represented in a more complicated matrix

$$
\begin{equation*}
(Q)_{i+1, i}=\gamma_{i} a_{i}^{\dagger} \quad\left(Q^{\dagger}\right)_{i, i+1}=\gamma_{i} a_{i} \quad(i=1,2, \ldots, 2 j) \tag{8}
\end{equation*}
$$

where $a_{i}^{(\dagger)}(i=1,2, \ldots, 2 j)$ represent $2 j$ bosonic annihilation (creation) operators. Here the states are represented in $(2 j+1)$-column vectors. The state, which has only the i th component from the bottom, has parafermionic number ($i-1$). We can also write the charge in terms of f_{j} and f_{j}^{\dagger} only:

$$
\begin{equation*}
Q=\frac{f_{j} f_{j}^{\dagger}}{\left|\gamma_{1} \gamma_{2} \ldots \gamma_{2 j}\right|^{2}}\left(a_{1}^{\dagger} f_{j}^{+2 j-1} f_{j}^{2 j}+a_{2}^{\dagger} f_{j}^{\dagger 2 j-2} f_{j}^{2 j} f_{j}^{\dagger}+a_{3}^{\dagger} f_{j}^{+2 j-3} f_{j}^{2 j} f_{j}^{\dagger 2}+\ldots+a_{2 j}^{\dagger} j_{j}^{2 j} f_{j}^{+2 j-1}\right) \tag{9}
\end{equation*}
$$

The constants $\gamma_{i}(i=1,2, \ldots, 2 j)$ are now defined as

$$
\gamma_{2 j-k+1}=\langle k-1| f_{j}|k\rangle
$$

where $|k\rangle(k=1, \ldots, 2 j)$ denotes the normalized state vector with the parafermionic number k. The Hamiltonian is expressed in the matrix

$$
\begin{equation*}
H=\frac{1}{2 \alpha_{j}} \sum_{i=1}^{2 j} \gamma_{i}^{2}\left\{a_{i}^{\dagger}, a_{i}\right\}+\frac{1}{2 \alpha_{j}} \operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{2 j+1}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& g_{1}=\left(\gamma_{1}^{2}+2 \sum_{i=2}^{2 j} \gamma_{i}^{2}\right)\left[a_{1}, a_{1}^{\dagger}\right]+\left(\gamma_{2}^{2}+2 \sum_{i=3}^{2 j} \gamma_{i}^{2}\right)\left[a_{2}, a_{2}^{\dagger}\right]+\ldots+\gamma_{2 j}^{2}\left[a_{2 j}, a_{2 j}^{\dagger}\right] \\
& \vdots \\
& g_{k+1}=g_{k}-2 \alpha_{j}\left[a_{k}, a_{k}^{\dagger}\right] \\
& \vdots \\
& g_{2 j+1}=-\gamma_{1}^{2}\left[a_{1}, a_{1}^{\dagger}\right]-\left(2 \gamma_{1}^{2}+\gamma_{2}^{2}\right)\left[a_{2}, a_{2}^{\dagger}\right]-\ldots-\left(2 \sum_{i=1}^{2 j-1} \gamma_{i}^{2}+\gamma_{2 j}^{2}\right)\left[a_{2 j}, a_{2 j}^{\dagger}\right] \\
& \quad=g_{2 j}-2 \alpha_{j}\left[a_{2 j}, a_{2 j}^{\dagger}\right]
\end{aligned}
$$

and

$$
\gamma_{i}=\sqrt{i(2 j-i+1)}
$$

The constants γ_{i} are based upon the higher representation $\operatorname{sl}(2 ; \mathbb{C})$ (cf equation (4)). After straightforward calculation we can prove that the superalgebra (C) is still valid, provided that

$$
\begin{equation*}
a_{i+1} a_{i+1}^{\dagger}=a_{i}^{\dagger} a_{i}+c_{i} \quad c_{i}=\text { constant } \quad(i=1, \ldots, 2 j-1) \tag{11}
\end{equation*}
$$

A proof will be given in a future publication [5].

For example, assuming $\forall c_{i}=0$ we would get simple solutions

$$
\begin{equation*}
a_{i+1}= \pm a_{i}^{\dagger} \quad(i=1, \ldots, 2 j-1) \quad \text { and } \quad a_{1}=a . \tag{12}
\end{equation*}
$$

The solutions (12) are preferable for the positive semidefiniteness of the energy. It was demonstrated in [6] in the case of the order $n=2$.

Parasupersymmetric quantum mechanics was also discussed in terms of the GreenCusson ansätze [7] by Beckers and Debergh [8]. By the Green ansätze, the parafermionic annihilation operator of the order $n=2 j$ is written as

$$
\begin{equation*}
F_{j}=\sum_{i=1}^{2 j} \xi_{i} \tag{13}
\end{equation*}
$$

where the Green components ξ_{i} obey the relations

$$
\begin{align*}
& \left\{\xi_{i}, \xi_{i}^{\dagger}\right\}=1 \\
& \left\{\xi_{i}, \xi_{i}\right\}=\left\{\xi_{i}^{\dagger}, \xi_{i}^{\dagger}\right\}=0 \tag{14}\\
& {\left[\xi_{i}, \xi_{j}\right]=\left[\xi_{i}, \xi_{j}^{\dagger}\right]=\left[\xi_{i}^{\dagger}, \xi_{j}^{\dagger}\right]=0 \quad(i \neq j) .}
\end{align*}
$$

The Green components are similar to the ordinary fermions, though ξ_{i} and $\xi_{j}^{(+)}(i \neq j)$ commute each other in (14), while the ordinary fermionic operators anti-commute. In Cusson's realization of the Green ansätze the Green component can also be represented by the direct product of the ordinary fermionic annihilation operators and the Dirac matrices [7]. The Dirac operators need to transfer the anti-commutability to the commutability. This representation is completely equivalent to the following direct product representation:

$$
\begin{align*}
F_{j} & =\theta \otimes \underbrace{I \otimes \ldots \otimes}_{(2 j-1) I^{\prime} s} I+I \otimes \theta \otimes \underbrace{I \otimes \ldots \otimes}_{(2 j-2) I^{\prime} s} I+\ldots+\underbrace{I \otimes \ldots \otimes}_{(2 j-1) I^{\prime} s} I \otimes \theta \\
& =\sum_{i=1}^{2 j} \underbrace{I \otimes \ldots \otimes I \otimes \theta \otimes}_{(i-1) I^{\prime} s} I \underbrace{I \otimes \ldots \otimes I}_{(2 j-i) I^{\prime} s} \tag{15}
\end{align*}
$$

where

$$
\theta=f_{1 / 2} \quad \text { and } \quad\left\{\theta, \theta^{\dagger}\right\}=I \quad\{\theta, \theta\}=0 .
$$

If we put

$$
f^{i}=\underbrace{I \otimes \ldots \otimes I \otimes \theta \otimes}_{(i-1) I^{\prime} s} I \underbrace{I \otimes \ldots \otimes I}_{(2 j-1) I^{\prime} s}
$$

the parafermionic annihilation operator is written as

$$
F_{j}=\sum_{i=1}^{2 j} f^{i} .
$$

This time f^{i} can be identified with the Green components because

$$
\begin{align*}
& \left\{f^{i}, f^{i \dagger}\right\}=\underbrace{I \otimes \ldots \otimes I}_{p I^{\prime} s} \\
& \left\{f^{i}, f^{i}\right\}=\left\{f^{i \dagger}, f^{i \dagger}\right\}=0 \tag{16}\\
& {\left[f^{i}, f^{j}\right]=\left[f^{i}, f^{j \dagger}\right]=\left[f^{i \dagger}, f^{j \dagger}\right]=0 \quad(i \neq j)}
\end{align*}
$$

Although our parafermionic annihilation (creation) operator and Green-Cusson annihilation (creation) operator are constructed in a different way, the algebraic structure is equivalent. Representing F_{j} for the operator f_{j}, the identity (A) is still kept valid. Therefore, both the definitions of the parasupercharge $Q_{j}=a^{\dagger} F_{j}$ and the supercharge (9) also lead to the identity (B) and the superalgebra (C).

Acknowledgments

The author is very grateful to all the members of the Department of Applied Physics, Seikei University and would also like to thank Professor Naotaka Yoshinaga for valuable discussions.

References

[1] Wilczek F 1982 Phys. Rev. Lett. 49957
[2] Ohnuki Y and Kamefuchi S 1982 Quantum Field Theory and Parastatistics (Tokyo: University of Tokyo Press)
[3] Witten E 1981 Nucl. Phys. B 185513
[4] Rubakov V A and Spiridonov V P 1988 Mod. Phys. Lett. A 31337
[5] Tomiya M and Yoshinaga N 1992 in preparation
[6] Beckers J and Debergh N 1990 Nucl. Phys. B 340767
[7] Green H S 1953 Phys. Rev. 90270
Cusson R Y 1969 Ann. Phys., NY 5522
[8] Beckers J and Debergh N 1991 J. Phys. A: Math. Gen. 24 L597

