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Kitamachi 3-3-1, Musashinoshi, Tokyo 180, Japan 
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Abstract. We construct the arbitrary order parasupersymmetric quantum mechanics of one 
boson and one parafermian degrees of freedom. The parasupersymmetry algebra is QyQ;+ 

2j represents the order of parasupersymmetry, H is the Hamiltonian and Q, is the 
parasupercharge. 

0, >,-I Q,Q,+. + . .+ Q;Q:'= a,Q''-'H (e, = t j ( j +  l)(Zj+ I)), Q?"= 0, [Q,, HI =O, where 

Recently the interest of physicists has tumed to the possibilities of statistically exotic 
behaviour of particles. Its scope is expected to spread over a wide range of physics. 
For example, the anyon [l]  is one such case. Here we consider parastatistics [Z], 
applying it to quantum mechanics associated with supersymmetry [3]. 

In the case of ordinary N = 1 supersymmetric quantum mechanics, the supercharge 
Q and the Hamiltonian H make the supersymmetric algebra [3] 

(0, Q'} = QQ'+ Q'Q = H Q 2 = 0  [ H ,  91 = 0. (1) 

We shall try to generalize the parasupersymmetric quantum mechanics which was 
introduced by Rubakov and Spiridonov [4]. They constructed the second-order para- 
supersymmetric quantum mechanics. We will generalize it to higher order. In general- 
ized parasupersymmetric quantum mechanics, fermions obey parastatistics; the same 
kind of fermion can occupy the same state n times ( n  = 1, ordinary fermion; n =2, 
Rubakov's case). 

We shall begin by studying the parasupercharge which consists of the direct product 
of the parafermionic and bosonic operators. In the case of second-order parasupenym- 
metric quantum mechanics, the supercharge Q and the Hamiltonian H obey the 
parasupersymmetric algebra 

Q'Q'+QQ'Q+ Q'Q2=4QH Q'=O [ H ,  91 = 0. (2) 
Note that this time the square of Q does not vanish, but the cube of Q does. The 
Hamiltonian does not have a direct representation by Q and Q'. Nevertheless, the 
fermionic creation (annihilation) operator f' (f) and the fermionic part of the 
Hamiltonian HF still preserve the algebra 

[ A  HF1 =f [f', HF1 = -f+ HF=f[f',fl.  (3) 
ThereforeLf and ZH,perform the algebras of sI(2; C). Its fundamental representation 
corresponds to an ordinary fermion. Higher-dimensional representations correspond 
to higher-order parastatistics respectively. The construction of the higher representation 
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of sl(2; C )  is already familiar among physicists as the composition of angular momen- 
tum. Mathematically the represenration for the angular momentum j coincides with 
the parafermionic operators of order n = 2j. The identification n = 2j will help us to 
clarify the algebraic structure of the parafermionic operators. Let us redefine the 
creation (annihilation) operator of the parafermion of the order n =2j as f] (A) and 
the supercharge as Q,. Subscript j is to distinguish the dimension of representation 
(the dimension is 2j  + 1 )  and of course it is mathematically related to angular momentum 
j described above. 

In the following we shall prove that operators f] (6) obey the identity 

f:%'+ fy-'f;&+fy-2f;fj+. , .+ fjf? = .;fy (A) 
where 

.,=2' 3J(J+1)(2J+I)  ' ( j = t , 1 , $ , 2  ,.._ ). 
In order to prove (A) we choose the Hermitian representation of& (f,!). 

( j ,  m + 1 1  f l l  j ,  m )  = J ( j -  m ) ( j +  m + 1 )  
( j ,  m - 11h1 j ,  m )  = J ( j  + m) ( j  - m + 1 )  
o t h e IW i s e 

( m  = -j, - j + l , .  . . , j - 1 )  
( m  = - j + l , .  . . , j - 1 , j )  (4) 

( j ,  k l f q j ,  !) = Q 1  

Here the state 1 j ,  m) has been defined as 
4[f],hlli m)= mlj ,  m )  - j < m < j  

and this state represents ( m  +j)-parafermions. We calculate term by term: 
2 ; t . .  

( f j  f j I J , J ) = O )  

j 

m=-j+2 
( j ,  - j f lJ f : ' -*- ' f : f :+'Jj ,  j )  = ( 2 j -  k ) ( k + l )  n 4 j + m ) ( j - m +  1) 

i 

m--j+2 
( j ,  -j+ lJf,+f?\j, j )  = 2j n J(j + m ) ( j  - m +  1 )  



Generalized parasupersymmetric quantum mechanics 4701 

Summing up all terms, we obtain 
( j ,  - j + l l ( f y f ] +  f:’-’f]&+f:’-’f]fj+. . .+ f j f j  t y  ) l j , j )  . .  

where we have used 
2j-1 

k=O 
C ( 2 j -  k ) ( k + l )  = $ ( j +  1)(2j+l) = g.. 

All the other matrix elements vanish. Therefore we have the operator’s identity (A). 
Next we can derive the identity 

Q;”Q;+ Q Y - I Q J Q ~  + Q~-*Q;Q;+ .  . .+ QJQ;” = a j ~ y - l ~  (B)  

where 

Qj = at& Q] = of: H = $ { a ’ ,  a}+$[  f ; ,&]  
between the Hamiltonian H and the supercharge Q,. The formula (A) plays a funda- 
mental role here. The left-hand side of (B) becomes 
a t 2 j a f 2 j f ? + a t 2 j - l  aa t f j  zj-1 f , & + . . . + a a y ; f y  t 

, I  

= o t z j - ’Hs(~? j f ;  + f : j - l f ]& +. . . + f,?fy) + a t 2 j - 1 f { - f , ? j f ;  + fy-’f;& 
+ . . . + 2( k -$) fy-’fl f :  + . . . + 2(2j -f)f’f2’S 

(7) - - (It2j-I HBajf:’’-’+atz’-’ .f .~.j(j+l)(2j+I)f~-’HF 

= a j ( a t 2 J - ’ f y - ’ ) ( H B +  H F )  

= a j ~ 2 J - l ~  

where 

H B = f { a t , a }  H ~ = f [ f ; , & l .  

Finally we reach the superalgebra 
Q ~ Q ; +  QY;”-’QJQ~+ Q;”-~Q;Q;+. . .+ Q;Q? = a j ~ F - l ~  
Qyl = 0 [ Q j ,  H l = O .  (C) 

The bosonic part of the Hamiltonian HB has positive definiteness, since HB is the 
Hamiltonian of an ordinary harmonic oscillator. Its lowest energy is f. On the other 
hand, the parafermionic part of the Hamiltonian H F  of order 2j has the series of the 
eigenvalues: -j, - j + l , .  . , , j. In the case of j = f  (ordinary SUSY), the lowest energy 
of the total Hamiltonian H = H.+ H ,  is zero, and H has positive semidefiniteness. In 
the case o f j  z f ,  unfortunately we cannot require that the spectrum of H is non-negative 
automatically without some other physical requirement. The states are 2j-fold degener- 
ate, hut there are a few exceptions. For example, we may assume that there exists the 
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unique ground state with the energy E,,. Energy levels with E >>Eo are Zj-fold degener- 
ate. More precisely, the ground state is non-degenerate, the first excited state is doubly 
degenerate, the second excited state is triply degenerate,. . . , ith ( i  <2j) excited state 
is (i+ 1)-fold degenerate. In the case i 2j, states are 2j-folded. Details of the spectrum 
will be discussed elsewhere [5]. 

Rubakov and Spiridonov [41 treat a more general case that the parasupercharge 
cannot be split into the direct product of the parafermionic and hosonic operators. 
Their Hamiltonian can possess the positive semidefiniteness of the energy under some 
physical conditions. We will generalize their parasupersymmetric quantum mechanics 
to higher order. Basically they represent the parafermion of order Z j  in a (2 j+  1) x 
(2j+ 1)-matrix. Thus the parasupercharge is represented in a more complicated matrix 

(Q)i+i,i=~ioT (Qt)j,g+l = ?;ai ( i =  1,2 , .  . . ,2 j )  (8) 
where ai” ( i  = 1,2,. . . , 2 j )  represent 2 j  hosonic annihilation (creation) operators. Here 
the states are represented in ( Z j +  1)-column vectors. The state, which has only the ith 
component from the bottom, has parafermionic number ( i  - 1). We can also write the 
charge in terms of 1; and f: only: 

The constants yi ( i  = 1,2,. . . ,2j) are now defined as 

?‘2j-k+I = (k - l l f ; lk )  
where Ik) (k = 1, .  . . ,2 j )  denotes the normalized state vector with the parafermionic 
number k The Hamiltonian is expressed in the matrix 

where 

2;--L 

g,+, =+[al ,  a : l - ( z y : + y : ) [ a 2 , a : 1 - . . . - ( 2  i = 1  2 vt+r2j)[a2j,aij~ 

=g2j-2a,[a2,, 
and 

yj  = J i (2 j  - i f  1). 

The constants yi are based upon the higher representation sl(2; C) (cf equation (4)). 
After straightforward calculation we can prove that the superalgebra (C) is still valid, 
provided that 

a,+,a:+, = a i  t ai + e, ei =constant ( i =  1,. . . ,2j-1). (11) 

A proof will be given in a future publication [51 
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For example, assuming Vc,  = 0 we would get simple solutions 

a,,, = *a:  ( i  = 1,. . . , 2 j -  1) and a ,  = a .  (12) 

The solutions (12 )  are preferable for the positive semidefiniteness of the energy. It was 
demonstrated in [a] in the case of the order n = 2. 

Parasupersymmetric quantum mechanics was also discussed in terms of the Green- 
Cusson ansatze [ i j  by Beckers and Deberg'n [Sj. By tine Green ansatze, the parafer- 
mionic annihilation operator of the order n = 2j is written as 

...I.--- *I.- P.-..-.. ^^__^^ _".̂  c L̂a.. .I.- -a,..&:-.." 
w,,Ci,r L L l C  UlrCill .,uL"pw1Lc"Lu si w w r y  L l l r  I~IaLLIULID 

14% Sl} = 1 

{ti, t;)=ttj,t:}=o (14) 

[4,551= [ti, 8 1  = rs:, 41 = 0 ( i  # j ) .  

The Green components are similar to  the ordinary fermions, though ti and @) ( i  # j )  
commute each other in (14), while the ordinary fermionic operators anti-commute. In 
Cusson's realization of the Green ansatze the Green component can also be represented 
by the direct product of the ordinary fermiooic annihilation operators and the Dirac 
matrices [7]. The Dirac operators need to transfer the anti-commutability to the 
commutability. This representation is completely equivalent to the following direct 
product representation: 

4 = 0 0  I O . .  . @ I +  IO 0O I O . .  .O I f . .  . f I O .  . .O IO 0 - - - 
(Zj - l ) l '*  (2j  - 2)I ' s  ( 2 j - l ) l ' s  

2J 
= 1 I O  ... O I O ~ O I O  ... 01 
L L 

; = I  (i-l)rs ( 2 j - i ) l ' s  

where 

e =fi12 and {e, 0 7  = I {0,e)=o. 

If we put 

f ' = I O .  . . 6 m e O r @ .  . .@I 
LT-' - 

( i -  1)I.s ( 2 j - l ) I ' i  

the parafermionic annihilation operator is written as 



4704 M Tomiya 

This time f i  can be identified with the Green components because 

IQ.. .Q1 
it - - W,f 1- j,.. 

{fi ,f i}={fif ,f<'}=O 

[fi ,fJ] = [fi,fjt] = [fit ,fjt]  = 0 ( i # j ) .  

Although our parafermionic annihilation (creation) operator and Green-Cusson anni- 
hilation (creation) operator are constructed in a different way, the algebraic structure 
is equivalent. Representing F; for the operator h, the identity (A) is still kept valid. 
Therefore, both the definitions of the parasupercharge Qj = a t e  and the supercharge 
(9) also lead to the identity (B) and the superalgebra (C). 
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